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1 INTRODUCTION AND BACKGROUND

Transformation of the earth surface has increased over time, with impacts shifting from local to
gl obal scales, 6alteri ng dtremy thausasthia ifecon theaonly f | o w
inhabited planet we kno@(Kates et al. 1990) Land disturbance due to human activity impacts a
range of earth system functions, including climate regulation, hydrologic function, biodiversity
richness, and other séres. For example, land use change accounts for 23% of total
anthropogenic forcing of climate warming (IPCC 2019). Direct human action in the form of land
use change has accounted for roughly-tinads of all observed land change over the last 30+
years(Song et al. 2018). Deforestation, agricultural intensification, urbanization and other
dynamics reveal an increasing appropriation of natural lands for economic use and the increasing
intensification of existing land uses (Foley et al. 2005). Consitteraternational policy effort

has focused on slowing tropical deforestation in an attempt to reduce carbon emissions and limit
damage to forest ebenefits such as the maintenance of terrestrial biodiversity, largely with little
impact to date. Monitorgnland change is a prerequisite to measuring its impacts, both in the
policy and scientific domains.

Climate change itself is also a driver modifying land cover and land use. Tree lines are

changing, mortality events increasing, droughts intensifyBgch land changes over time may

become a larger fraction of the overall dynamic compared to other proximate drivers of

disturbance, including tipping points resulting in large scale collapse of ecosystems. Lenton et al.
(2019) stat e t Imcotheriiuthbn antigitieeriskdriggerng l@ospdere tipping
points across a range of ecosystems and scal e
understanding of these observed changes i n ma
change and mordddal climatedriven land change, data on land disturbance data can offer

invaluable observational data and insights in support of scientific inquiries concerning global
environmental change.

Disturbance is defined as any event that occurs outside tipe chnatural variability

(Mildrexler et al. 2009) and may be due to hunraduced or natural causeBisturbance

indicates an impact on land cover or land use that may result in a complete conversion or only a
modification of the preexisting condition.Disturbances can be instantaneous or ey,

limited in area or regional in scale. Differentiating the limit of natural variability is a key
requirement in assigning disturbance, as many ecosystems and associated land covers can be
highly interannudy variable as are land useAdditionally, many land covers and land uses are
defined by disturbance, such as fire regimes in boreal forests, or rotations in forestry land uses.

Disturbance is oftenharacterizedh ecological termssevents that alter ecosystem extent,
structure, communities, and other variablBgforestation, mining, fire, drought and other
dynamics, whether humanduced or natural in cause, result in a reduction in vegetation cover
with concomitant impacts on esygstem function For this application, we focus on such
dynamics and define disturbance as a loss of vegetation cover outside-tefrmelistorical
variability. In this way we modify the general definitioof disturbance to beingaver change

of more to less vegetation covdihe presented method and associdisturbancelgorithm is
appliedin nearreal time as new imagery are availaldejiveringlow latency results to facilitate
land management decisionaking Nearr e a |l t i meanappediercHLS$ tdednd made
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available to usersAnnual summaries of alerts are thggmeratedfacilitating downstream
science through the production of synoptic annual records of global land disturbance.

The potential uses ekgetation disturbanaderts at medium spatial resolutigd0-30m from

globally acquired, publicly available sensing systems such as Landsat and SemnsingeZyom
enforcement to management applications. Monitoring road building, loggnegiclearing for
agriculture and other dynamics can have added value if reported ireaéime. The DETER

alerts of Brazil were critical to increasing the capesiof law enforcement and land

management agencies in reducing illegal deforestation in the Brazilian Amazon (Nepstad et al.
2014). The deployment of such a system {papically by Global Forest Watch through the
University of Mar dsisandiDissove|(GLAD lab, has affeted Sucha
possibilities to other countries. Studies have showed GLAD alerts to have been used to reduce
deforestation in community forestsPeru and Central AfricéSlough et al. 2021; Moffette et al.
202]). Here,we advancehis approaclby applying it at global scalith a continuous measuyre
characterizing generic vegetation lasstead obnly forests and employing the highest cadence
medium spatial resolution data set availabighe form ofHarmonized Ladsat 8and 9and
Sentinel2A and 2B data (HLSpas the input.The HLS tiling system is shown in Figure The
integration of both medium spatial resolution systems greatly enhanced the temporal resolution
of these data, enhancing aleapabilities.
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Figurel. The global map of tile IDs for the HLS products (same as original Seftitilglg system).
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2 ALGORITHM DESCRIPTION
2.1  Scientific Theory

Operational disturbance alert systems can be signahdrcovethemebased. Signabased
systemsuse a radiometric measure, such as greenness or brightness temperature, as the primary
input to the alert systendelineating change outside normal variation of thésgeophysical

variables By comparison,iemebasedalerts characterize a specific land cover change dynamic
over a time seriesuch as forest cover loss, i.e. the removal of tree cover, or flooding, i.e. an
increase in the expanse of surface water beyond the nAssuchJand covethemebased

alert yystemsprovide a more intuitive physical meaniagd a resulting ability to map and

validate area estimates more easily thimmgeophysicameasures

Fractional vegetative coverahemebased measure and the basis of the OPERA DIST
algorithm. Fradbnal cover estimations from satellite data have a long history, employing a host
of algorithms, from simple linear endmember mixture modaé&f¢ies et al. 2000; Adams et al.
1995; Settle and Drake, 1998 multiple endmember mixture modeRdberts et al1998,

empirical modeling@eFries et al. 1997Zhu and Evans, 1994 and distributiofree machine
learning methodsHansen et al. 2002 The advantages of continuous dependent variables
such as percent tree or vegetation cover include improvediggnsit change compared to
categorical labels, greater flexibility for users to adjust definitions, and more realistic depictions
of ecotones.

Operational alerts of land change have been employed in a variety of modes, ranging from illegal
deforestation monitoring in Brazil with the Réime System for Detection of Deforestation
(DETER)(Shimabukuro etal. 2013gact i ve fire monitoring with t
for Resource Management System (FIRNIZAvies et al. 2009p food seurity with the

Famine Early Warning System (FEW&)USAID (Ross et al. 2009)Newerproducs include

the use of medium spati al resolution data, fo
(Hansen et al. 20)6nade from Landsat and Senti2allata. To advance this capability, we will
implement a global low laten@lert,DIST_ALERT, andanannualsummaryDIST_ANN,

product sui tHarmanzedhandsat @8 FaddsSentineRA and 2B data (HLS)

(Claverie et al. 2018)s inputs. The combined capability of thEseth observingystems

results in &-4 day repeat visit cadence globally and Roy, 201Y, facilitating the application

of nearreal time disturbance mapping.

Vegetation fraction is a suitable variable foonitoring global land change. We have developed
global algorithms for mapping per pixel percent vegetation aasieg MODIS and Landsat data
(Carroll et al. 2010Hansen et al. 2014ing et al. 201). Results with Landsat demonstrate the
utility of the measure in mapping the dynamic of vegetation losempibying the map®
samplebased and econometric methods to estintatel use outcomes/drivers aapply the

measure as a leadirgonomic indiator, respectivelyYing et al., 2017; Ying et al., 2019
Vegetation loss as a generic dynamic can inform specific downstream applications from local to
global scalesind we will apply percent vegetation to HLS tiseries imager{Claverie et al.

2018)in mapping land disturbance.

The technical data in this document is controlled under the U.S. Export Regulations, release to
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2.2  Assumptions

The first assumption imonitoring land disturbancas we have defined itoncerns

disturbances that involve vegetation loss. In terms of global environmental change, vegetation
loss is a key indicator, whether the dynamic is deforestation, desertification, overgrazing, or fire.
However, a limited number of disturbance dynesrdo not involve vegetation loss, for example
redevelopment of a commercial parcel, or lava flow superposed on old lava fields. An open
guestion is the proportion of disturbance, as defined by generic surficial change events, that is
omitted whertargetng vegetation loss. It is the assumption that the vast majority of land
disturbance relevant to policy, management and science applications will be observable using
vegetation cover as the indicator variable confirm this assumption, weill add a spectral

distance measute delineate generic changagtside of the vegetation cover loss theme

Another assumptiononceris the abilityof optical timeseries data to discriminate relevant
vegetation loss evenégcurately and in a timely fashioharge conversion events, such as
deforestation, have been sttoto be reliably characterizédlansen et al. 20} 3while

modification, or degradation of land cover types, has more mixed results. Conversions represent
ahigh contrast, typically longjved spectral change. Modifications represent low contrast, often
ephemeral spectral changéhe manner in which we plan to add sigimaldetecting

modifications in effect to improve contrast, is to exploit thensity of theHLS timeseries.
Repeated alert detections, evelow in contrast individuallycan in concertrable accurate
assignment abw intensityland disturbanceAs a safeguard, our produgteification and
definition of disturbance is for 50% or greater vegetative cover loss events, or more suited for
conversion than modification.

The technical data in this document is controlled under the U.S. Export Regulations, release to
foreign persons may require an export authorization.
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3 VEGETATION FRACTION ALGORITHM

We employa machine learning techniqtecharacterizeegetatiorfraction. Our modetelies
on the following assumptions for successful estimation:

1) Consistent radiometric characterization of input imagery. The HLSd4&nes data
feature state of the practice geocessing including surface reflectance estimatiah a
bi-directional reflectance distribution function correction, resulting in a reliable, scalable
set of independent variables for input®iatmachine learning algorithm

2) Accurate quality assessment flags in screening inputs. The HLS data come wdttya g
assessment flag that must accurately screen unviable observations. No quality
assessment layer is perfect, but too mamyssionerrors in terms opassing
haze/cloud/smoke/shadempacted observations leads to errors in mapping land change.
Howeve, the unprecedented density of the HLS tiseeies mitigates against occasional
errors in quality flags.

Given consistent spectral inputs and quality assessment,-aalibhated model is enablediVe
employ a regression tréBreiman et al. 1984nodel to characterize per pixel vegetation
fraction.Regression trees are a nonlinear, distribufrer algorihm that is highly suited for
handling the complexity of global spectral land cover signatu@es.model is an indicator
product, building on Lands#tased vegetation continuous fieldhps(Hansen et al. 2014; Ying
et al. 2017), which in turn wegerivedfrom data originally used to generate the MODIS
Vegetation Continuous Field¥CF) (Hansen et al. 2002, 2003).

MODIS VCF percent vegetation maps capture peak annual cover conditiolosir training

data for all subsequent applicatidresve leveragettaining daa tied to high vegetation cover,
including annuaVCF time-series using Landsat data to map global vegetative cover loss (Ying
et al. 2017).Here, we appedtheregression tree modeg approactirom Ying et al. (2017}o
2020LandsatAnalysis Ready Bta Potapov et alR020)(Figure2), andreusedhe updated map
as trainingnputs tocontemporaneous HLS dat#/e employdan annual peak greenness global
metric (time-series dataompositedo represent peak vegetation conditigiabally) from HLS
inputs for the RED, NIR, SWIR 1.6 and SWIR 2.1 bandwidths (Claverie et al. 2818
independent variables\ote, to avoid residual atmospheric contamination, iendt employ
shorter wavelength blue and green bands as independent variables in estimating vegetation
cover. Both the percent vegetation cover and HLS bands representing peak greenness were
nearest neighbor resampled to a 0.005 degree grid and usedtagaripe bagged regression
tree model. Twentjive percent of HLS tiles were systematically samp@ad sibsequent

sampla with replacemendf 25% ofpixels used in a bagging approaeainerell treeswere

nearly perfectly fitand a 1% sample seaiside for model evaluatioffhe result is a turkey

model which can be applied to any HLS image using the aforementioned Dhedsain
assumption of the resulting model is that it covers all ranges of vegetative[Eiguee 2) and

may be applied to ofpeak greenness imageryalidation of the vegetation layaeurill test this
assumption anchay result interationof the model Final and future iterations of themodelwill

be made available to users for recreapegtileoutputs and finatlerivedproducts.

The technical data in this document is controlled under the U.S. Export Regulations, release to
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% vegetative cover

l100
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Figure 2. 2020 peak vegetation cover from Landsat Analysis Ready Data (Potapov et al.
2020) used to train HLS data.

Regression trees recursively divide a training data set by maximizing the decrease in entropy
between resulting subsets quantifiecdy thesum of squaresf the resulting subsetdnput
spectral bands are interrogated and the reflectance value that best discriminates two subset
populations as measured by maximally decreased variance is cl&pigting the data

continues until no further discrimination can be made or whaeset condition is met. The
regression tree takéhe following form(Breiman et al. 1984/enables and Ripley 1998nd is
implemented in C++ code in our data processing system

2
D= (y—uy)"

cases(j)

whereD is the deviancean entropy measuras measured by the corregtt®im of squares for a
split. Deviancas calculated from all cases of and the mean value of those cases,

All input satellite data aranalyzedacross digital number values, and right and left splits are
examined. The split that produces the greatest reduction in the residual sum of squares, or
deviance, is used to divide the data, and the process begins again for the two newly created
subsets. igure 3 shows a spectral plot of the global land surfaqeeak greenness conditions in
two-dimensionakpectral spacse The model functions as a loalp table for the band HLS

input spectral space and each pixel in each image assigned a vegetaidnaotion. While
many cover types require a tirseries for identification, whether forests or croplands, vegetation
fraction can be mapped instam@usly, much like water. As sudime-series of HLS
observations in the form of vegetation covan te used to monitoringandchange.
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foreign persons may require an export authorization.
12



Revision A
12/09/2022

P
0

0.8]

Red reflectance (0.66um)

S
=
©
=
[¢}]
[&]
c
=
3
2
=
2
el
[
e
[
=
£
T
@
=
g
[s]
c
%2}

Figure3. Example pairwise plots for HLS bandwidths of the global land surface under peak greenness conditions as
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depicted in HLS data from Nov. 2020 to Oct. 2021, where a) is RED vs. NIR, b) SWIR 1.6 vs. NtiR SANER

1.6 vs. SWIR 2.1. Gragcale circles indicate mean vegetation cover per cover stratum (shown at top). Subplots at

3.1

As with any machine learning algorithm, its performance is only as good as its input data sets,
both the imagery and training data. We have shown in previous work that the vegetation fraction

top are for 10% increments of percent vegetation cover from main plots below.

Assumptions

measure as estimated using regi@strees is a reliable input to mapping vegetation loss at the
global scaleYing et al. 201Y. The assumption is that while absolute estimation of vegetation

The technical data in this document is controlled under the U.S. Export Regulations, release to
foreign persons may require an export authorization.
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cover may be biased (validation will indicate the degree of bias), the relative magnituale of t
series cover estimates is accurate and, thus, able to discriminate change.

3.2 Algorithm Input Variables

The DIST algorithm employs a vegetation cover indicator as the input var\abigetation

cover can be mapped per pixel, recording the natural phenological or managed land use dynamic
of the land surface. Nea@rm historical variation can then be used as a reference for detecting
anomalous vegetative cover estimalésgetatonce er i s def i ned as Wt he
orthogonal to the surface that is intercepted by the cover trait of idte@a6tol et al. 201pand
includes all plant life over land including both woody and herbaceous (i.evoody)

vegetation as with the MODIS Vegetation Continuous Field (M&6gict (Hansen et al. 2003

VCF ATBD). Vegetation dsturbance is mapped when there is an indicated decrease in

vegetation cover within an HLS pixel, formatigfined to be 50% vegetation cowkcrease

when the scene is compared to pinevious calendar years as¥Yimg et al.(2017), though the

algorithm will report a continuous record of vegetation cover loss. The number of calendar years
used as a reference will be two years due to initial HLS availability, but may ctiangg

algorithmic calibration.

Applying the per scene vegetation cover model will result in asenesof per pixel vegetation
cover. Figure4 shows three dates of Hik&erived vegetation cover over the Bootleg Fire in
Oregon, USA. The dates were chose they were clodsinokefree and outline the scale of the
fire extent. Figurd depicts a timeseries of vegetation cover for a pixel at the western edge of
the fire, illustrating the start of the fifer this pixelsometime after the morning of Juy
Disturbance, or vegetation loss, is quantified by the next cloud/sfredkénage on July 16. In
algorithm implementation,isturbances in vegetation cover will be identified by comparing each
current HLS scene to a summary of cover estimates fronopieyears representing a lower
bound of observed vegetation cover. The compabsiterical references derived from a small
calendawindow containingthe date of the current HLS scemath the exact length of the
composite period to be determingaring product developmentin this manner, we maccount
for intraaannualand seasonafariationin quantifying anomalously low vegetation cover
conditions

Strongly seasonal environments may have periods wieéeettbn of land disturbance is
precluded.For example, low sun angles and wirtenditions will lead to fewer observations
and lower vegetation contrast when observed. Howevevetietation cover model is sensitive
to leafoff non-photosynthetic woogcover in semdeciduous and deciduous environments
meaning forests and woodlands will register a positivedéafegetative cover. This outcome is
due to the fact that dense la#f tree covelhas a similar spectral signature to peak greenness
transtional shrublands in serairid ecotones. Figui@illustrates leafon, leafoff vegetation

cover estimates as compared to a clearing event in northern Virginiarél#alinga degree of
sensitivity to disturbance detection for either deafor leafoff conditions.
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Figure 4. HLS-derived vegetation cover for three dates in r-g-b color composite. Red
indicates vegetation loss after June 25, 2021. The three dates were chosen as they
were cloud-free and graphically capture fire extent.
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